Math Calculator Maths Formulas Physics Calculator Physics Formulas Chemistry Calculator Chemistry Formulas

Electrostatics Formulas

Searching for a One-Stop Destination where you will find all the Electrostatics Formulas? If so, you have come the right way and we have listed all the important formulae on this page. Make the most out of the Electrostatics Formula Sheet and get a good hold on the concepts. Utilize the Cheat Sheet for Electrostatics and try to memorize the formula so that you can make your calculations much simple.

Need any other assistance on various concepts of the Subject Physics then look out our Physics Formulas and get acquainted with the underlying concepts easily.

Electrostatics Cheat Sheet & Tables

1. Fundamental forces of nature

  • Gravitational
  • Electromagnetic,
  • Nuclear,
  • Weak.

Relative strength 1 : 1036 : 1039 : 1014
Charge is quantised, the quantum of charge is e = 1.6 × 10-19 C.
Charge is conserved, invariant, additive

2. Coulomb’s law

\(\overrightarrow{\mathrm{F}}=\mathrm{K} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} \hat{\mathrm{r}}\)
K = \(\frac{1}{4 \pi \varepsilon_{0}}\) = 9 × 109\(\frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\)
ε0 = 8.854 × 10-12\(\frac{C^{2}}{N m^{2}}\)
= Permittivity of free space
\(\frac{\varepsilon}{\varepsilon_{0}}\) = εr = Relative permittivity or dielectric constant of a medium.
\(\overrightarrow{\mathrm{E}}=\frac{\mathrm{Kq}}{\mathrm{r}^{2}} \hat{\mathrm{r}}\)

Note: – If a plate of thickness t and dielectric constant k is placed between the j two point charges lie at distance d in air then new force
\(\mathrm{F}=\frac{\mathrm{q}_{1} \mathrm{q}_{2}}{4 \pi \varepsilon_{0}(\mathrm{d}-\mathrm{t}+\mathrm{t} \sqrt{\mathrm{k}})^{2}}\)
effective distance between the charges is
d’ = (d – t + t\(\sqrt{\mathrm{k}}\))
Electrostatics formulas img 1

3. Intensity of electric field

\(\overrightarrow{\mathrm{E}}\) = Force on a unit positive charge = \(\frac{\overrightarrow{\mathrm{F}}}{\mathrm{q}_{0}}\) N/C or V/m.
Due to a point charge q intensity at a point of positive vector \(\overrightarrow{\mathrm{r}}\)
\(\overrightarrow{\mathrm{E}}=\frac{\mathrm{Kq}}{\mathrm{r}^{2}} \hat{\mathrm{r}}\)

4. Electric potential

Work done against the field to take a unit positive charge from infinity (reference point) to the given point.
VP = – \(\int_{\infty}^{P} \vec{E} \cdot \overrightarrow{d r} \text { volt }\)
Due to a point charge q, potential
V =K \(\frac{q}{r}\) volt

5. Principle of superposition

Resultant force due to a number of charges
\(\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}+\ldots . .+\overrightarrow{\mathrm{F}}_{\mathrm{n}}\)
Resultant intensity of field
\(\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}}_{1}+\overrightarrow{\mathrm{E}}_{2}+\ldots . . \overrightarrow{\mathrm{E}}_{\mathrm{n}}\)
Resultant potential V = V1 + V2 + … + Vn

6. Relation between \(\overrightarrow{\mathrm{E}}\) and V

\(\overrightarrow{\mathrm{E}}\) = – grad V = – \(\vec{\nabla} V=-\frac{\partial V}{\partial r} \hat{r}\)
In cartesian coordinates
\(\overrightarrow{\mathrm{E}}=-\left[\hat{\mathrm{i}} \frac{\partial \mathrm{V}}{\mathrm{dx}}+\hat{\mathrm{j}} \frac{\partial \mathrm{V}}{\partial \mathrm{y}}+\hat{\mathrm{k}} \frac{\partial \mathrm{V}}{\partial \mathrm{z}}\right]\)

7. Electric flux

Treating area element as a vector
dΦ = \(\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}\), Φ = \(\int_{s} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}\) volt – metre

8. Gauss’s theorem

Total outward flux through a closed surface = (4πK) times of charge enclosed
or Φ = \(\oint \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=4 \pi \mathrm{K} \sum \mathrm{q}=\frac{1}{\varepsilon_{0}} \Sigma \mathrm{q}\)

9. Intensity and potential due to a non-conducting charged sphere

\(\overrightarrow{\mathrm{E}}_{\text {out }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{r}^{2}} \hat{\mathrm{r}}, \mathrm{E}_{\text {out }} \propto \frac{1}{\mathrm{r}^{2}}\)
\(\overrightarrow{\mathrm{E}}_{\text {surface }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}^{2}} \hat{\mathrm{r}}\)
\(\overrightarrow{\mathrm{E}}_{\text {inside }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}^{3}} \overrightarrow{\mathrm{r}}, \quad \mathrm{E}_{\text {inside }} \propto \mathrm{r}\)
Electrostatics formulas img 2
Vout = K \(\frac{Q}{r}\), Vsurface = K \(\frac{Q}{r}\)
and Vinside = \(\frac{\mathrm{KQ}\left(3 \mathrm{R}^{2}-\mathrm{r}^{2}\right)}{2 \mathrm{R}^{3}}\)
Vcentre = \(\frac{3}{2} \frac{\mathrm{KQ}}{\mathrm{R}}\) = 1.5 Vsurface
Electrostatics formulas img 3

10. Intensity and potential due to a conducting charged sphere

Whole charge comes out on the surface of the conductor.
\(\overrightarrow{\mathrm{E}}_{\text {out }}=\frac{1}{4 \pi \pi_{0}} \frac{\mathrm{Q}}{\mathrm{r}^{2}} \hat{\mathrm{r}}\)
\(\overrightarrow{\mathrm{E}}_{\text {surface }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}^{2}} \hat{\mathrm{r}}\)
\(\overrightarrow{\mathrm{E}}_{\text {inside }}=0\)
Electrostatics formulas img 4
Vout = K\(\frac{Q}{r}\)
Vsurface = K\(\frac{Q}{R}\)
Vinside = K\(\frac{Q}{R}\) (Constant)
Electrostatics formulas img 5

11. Electric potential and field intensity due to a charged ring

On axis
V = \(\frac{K Q}{\left(R^{2}+x^{2}\right)^{1 / 2}}\)
\(\overrightarrow{\mathrm{E}}=\frac{\mathrm{KQx}}{\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}} \hat{\mathrm{x}}\)
Electrostatics formulas img 6
(x is the distance of the point on the axis from the centre)
At centre E = 0, V = \(\frac{\mathrm{KQ}}{\mathrm{R}}\)
Note: – If charged ring is semicircular then E.F. at the centre is
\(\frac{2 \mathrm{K} \lambda}{\mathrm{R}}=\frac{\mathrm{Q}}{2 \pi^{2} \mathrm{R}^{2} \varepsilon_{0}}\)
and potential V = \(\frac{\mathrm{KQ}}{\mathrm{R}}\)
Electrostatics formulas img 7

12. Electric field intensity due to very long (∞) line charge

\(\overrightarrow{\mathrm{E}}=\frac{2 \mathrm{K} \lambda}{\mathrm{r}} \hat{\mathrm{n}}=\frac{1}{2 \pi \varepsilon_{0}} \frac{\lambda}{\mathrm{r}} \hat{\mathrm{n}}\)
\(\hat{\mathrm{n}}\) is a unit vector iionpjd to line charge.

13. Electric field intensity due to a charged sheet having very large (∞) surface area

\(\overrightarrow{\mathrm{E}}\) = 2πK σ \(\hat{\mathrm{n}}\) (constant)
σ → charge of unit cross section

14. Electric field intensity due to an infinite charged conducting plate

\(\overrightarrow{\mathrm{E}}\) =4πKσ \(\hat{\mathrm{n}}=\frac{\sigma}{\varepsilon_{0}} \hat{\mathrm{n}}\)(constant)
σ → charge of unit surface area

15. Electric dipole

Two equal and opposite point charges separated by a small distance. Dipole moment \(\overrightarrow{\mathrm{p}}=\mathrm{q} \overrightarrow{\mathrm{d}}\). Direction of \(\overrightarrow{\mathrm{p}}\) is from -q to + q.
Electrostatics formulas img 8
Potential at a point A (r, θ)
V = \(\frac{\mathrm{Kqd} \cos \theta}{\mathrm{r}^{2}}\)
V = \(\frac{\mathrm{Kp} \cos \theta}{\mathrm{r}^{2}}=\mathrm{K} \frac{\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}\)

Electric field intensity

E = \(\frac{\mathrm{p}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}} \sqrt{1+3 \cos ^{2} \theta}\)
Er = 2K\(\left(\frac{\mathrm{p} \cos \theta}{\mathrm{r}^{3}}\right)\)
Eθ = K \(\left(\frac{p \sin \theta}{r^{3}}\right)\)
E = \(\sqrt{\mathrm{E}_{\mathrm{r}}^{2}+\mathrm{E}_{\theta}^{2}}\)
On axis θ = 0, Er = E = \(\frac{2 \mathrm{kp}}{\mathrm{r}^{3}}\)

On equatorial θ = \(\frac{\pi}{2}\), Eθ = E = \(\frac{\mathrm{Kp}}{\mathrm{r}^{3}}\)
Angle between E.F. at point A and x – axis is (θ + Φ)
where tan Φ = \(\frac{1}{2}\) tan θ

16. Dipole in an electric field
Electrostatics formulas img 9
In a uniform field Fnet = 0, (No translatory motion)
Torque \(\vec{\tau}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{E}}\) or τ = pE sin θ
Potential energy of dipole
U = – \(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{E}}\)
(dipole perpendicular to field is taken as reference state). Work done in rotating the dipole from θ1 to θ2.
W = U2 – U1 = pE (cos θ1 – cos θ2)
Time period of oscillation of electric dipole in uniform E.F.
T = 2π\(\sqrt{\frac{I}{P . E}}\);
I = moment of inertia

17. Equilibrium of charged soap bubble

For a charged bubble
Pext + Pelct. = \(\frac{4 \mathrm{T}}{\mathrm{r}}\)
For Pext = 0, Pelct. = \(\frac{4 \mathrm{T}}{\mathrm{r}}\)
or \(\frac{\sigma^{2}}{2 \varepsilon_{0}}=\frac{4 T}{r}\)

Electric field on surface
Esurface = \(\left(\frac{8 \mathrm{T}}{\varepsilon_{0} \mathrm{r}}\right)^{1 / 2}\)
Potential on surface
Vsurface = \(\left(\frac{8 \mathrm{Tr}}{\varepsilon_{0}}\right)^{1 / 2}\)

18. Energy density in electric field

U = \(\frac{1}{2}\) ε0E2 (J/m3)

19. When small drops of charge q forms a big drops of charge Q

Q = nq, R = r n1/3
Vbig =n2/3 Vsmall

20. Electric break-down or electric strength

Max. electric field can be created in the given medium.
For air Emax = 3 × 106 V/m

Seek help on various concepts taking the help of Formulas provided on the trusted portal Onlinecalculator.guru and clear all your ambiguities.